Автоматические регуляторы. Влияние на гидравлический режим систем водяного отопления.
top of page

 ОНЛАЙН-ЖУРНАЛ "ИНЖЕНЕРНЫЕ СИСТЕМЫ"
ВЕНТИЛЯЦИЯ, КОНДИЦИОНИРОВАНИЕ, ОТОПЛЕНИЕ, АВТОМАТИЗАЦИЯ

статьи инженерные сети

Автоматические регуляторы. Влияние на гидравлический режим систем водяного отопления.

Содержание:

Современный рынок оборудования для систем отопления наполнен широким ассортиментом арматуры. В отечественной практике стали чаще использоваться балансировочные клапаны, терморегуляторы, узлы регулирования, регуляторы перепада давления и расхода различных конструкций. Встает вопрос о том, какую регулирующую арматуру необходимо устанавливать в системах отопления, в каком количестве и на каких участках.


Важным элементом, предназначенным для регулирования системы, а значит, и для достижения максимально комфортных условий для пребывания людей в помещении, является терморегулятор. Он позволяет не только обеспечить необходимое количество теплоты, отдаваемое отопительным прибором, но и воздействовать на всю систему отопления в целом, непроизвольно изменяя гидравлический режим ее работы.



Расчёт системы отопления


Конечной целью расчета системы отопления и подбора оборудования для нее является обеспечение необходимого значения теплового потока от каждого отопительного прибора для компенсации теплопотерь помещений здания в целом и достижения комфортных условий для пребывания людей в здании на протяжении всего отопительного сезона.

Для соблюдения этих условий применяются два метода.

Первый заключается в максимально возможном увязывании колец системы диаметрами отдельных трубных участков системы и установки наименьшего количества регулирующей арматуры.

Второй метод пришел в отечественную практику вместе с новыми видами арматуры из Западной Европы. Он заключается в установке наибольшего количества арматуры на стояках, в тепловых пунктах и на ответвлениях для увязки циркуляционных колец непосредственно самой арматурой.




Преимущества и недостатки методов расчёта


Для подбора терморегуляторов, регуляторов расхода и балансировочных клапанов в современной практике используется характеристика, называемая пропускной способностью. Ее определяют как объемный расход воды в м3/ч с плотностью 1000 кг/м3, проходящей через клапан при перепаде давления 105 Па (1 бар). Размерность его (м3/ч)/бар0,5 или, пренебрегая физическим смыслом, в каталогах часто пишут просто – м3/ч.

За счет изменения kv на клапанах происходит изменение двух параметров: расхода теплоносителя через клапан G и перепада давления на клапане ∆P. Это влияет не только на гидравлику отдельных участков, но и на систему отопления в целом. Это важный фактор, который должен учитываться проектировщиками.

Клапан отопительного прибора способен автоматически изменять свою пропускную способность в зависимости от температуры воздуха в помещении за счет термостатической головки, датчиков внутреннего воздуха или же за счет ручного регулирования потребителем.

Важно также заметить, что необходим тщательный подбор термоклапанов у отопительных приборов, потому что зависимость их теплоотдачи от расхода теплоносителя нелинейная. Также и у клапанов. Они бывают различного конструктивного исполнения, и зависимость хода штока от пропускной способности имеет свои особенности. Сопоставляя эти две характеристики, мы получим общую характеристику регулируемого участка [1].

Однако изменения характеристик регулируемого участка может привести к разрегулировке всей системы. Под разрегулировкой будем понимать несоответствие расходов теплоносителя в отопительных приборах относительно расчетных или необходимых, вследствие чего произойдет недостаток или избыток теплоподачи в помещения.

В системе отопления факторами разрегулировки являются:

  • отключение ветвей, стояков, отопительных приборов и других элементов системы в связи с аварией или за ненадобностью;

  • изменение расчетного расхода теплоносителя в отопительном приборе с целью поддержания необходимой температуры или минимальной температуры помещения из-за временного его неиспользования;

  • изменения схемы или элементов системы отопления после реконструкции и ремонта.

Циркуляционный насос системы отопления тоже имеет различные изменяющиеся характеристики, которые должны учитываться при регулировке системы. В данном исследовании был применен стандартный (современный бесфундаментный) насос. Ошибочно убеждение современных проектировщиков в том, что для качественной и «беспроигрышной» увязки гидравлических колец необходимо подбирать циркуляционный насос с большим запасом по располагаемому давлению. Это приводит к неоправданно завышенным стоимости системы и расходу электроэнергии.

Современные конструкции насосов позволяют более экономно расходовать электроэнергию и более точно поддерживать заданное располагаемое давление и расход в системе (насосы с электрическим управлением). При увеличенных капитальных затратах на эти насосы можно выиграть в пониженных эксплуатационных затратах на электроэнергию.

Однако, ориентируясь на новые технологии, в ходе конструирования системы отопления необходимо комплексно подходить к возможным гидравлическим и, соответственно, тепловым разрегулировкам при эксплуатации системы.

На примере конкретных схем систем отопления рассмотрим достоинства и недостатки двух методов конструирования системы отопления, о которых говорилось ранее. Анализ схем проводился с помощью компьютерного моделирования.




Система отопления без применения балансировочного клапана


На рис. 1 приведена схема без применения балансировочного клапана.


Рисунок 1

Схемы системы отопления без применения балансировочных клапанов

1 – оборудование теплового пункта; 2 – циркуляционный насос; 3 – отопительный прибор; 4 – отключающий шаровой кран; 5 – термоклапан


Для начала был выполнен стандартный гидравлический расчет по методу удельных линейных потерь давления для подбора диаметров. Клапаны были подобраны по каталогам фирмы-производителя, после чего была задана их установочная характеристика (пропускная способность, перепад давления и положение установки).


Затем методом гидравлического расчета по характеристикам сопротивления определены коэффициенты затекания в каждый стояк и в каждый прибор.


В первом случае из регулирующей арматуры имеются только клапаны у отопительных приборов. Для анализа системы отключим один прибор на верхнем этаже первого стояка. Характеристика сопротивления увеличится и на графике (рис. 2) примет положение S1, а необходимый расход теплоносителя понизится на величину расчетного расхода в отключенном приборе (до 288,3 кг/ч).


В самом начале отопительные приборы начнут получать больше теплоты, что приведет к перегреву помещений. Термостатические головки, электроника или же потребители вручную, реагируя на это, начнут воздействовать на клапан, который будет опускать шток клапана, уменьшая тем самым свою пропускную способность и увеличивая сопротивление всей системы.

Каждый клапан будет опускать шток ровно на столько, на сколько расход теплоносителя должен измениться в отопительном прибое. В конце концов, установится стационарный режим, когда температура в помещениях стабилизируется, и штоки клапанов перестанут двигаться.



Рисунок 2

Характеристика насоса и системы отопления без использования балансировочных клапанов

S, ΔP, G – характеристика сопротивления, потери давления и расход теплоносителя в системе отопления соответственно; значения индексов этих параметров: «расч» – в исходном (расчетном) режиме; «1» – при отключении верхнего прибора первого стояка; «2» – при отключении первого стояка.


Чтобы описать физику процесса, использовано понятие коэффициента затекания [2]. Для начала он был определен для всех стояков системы, чтобы получить требуемую характеристику сопротивления на каждом участке стояков, тем самым, определив, какую пропускную способность будет иметь клапан у отопительных приборов в данном конкретном состоянии системы.


Важно заметить, что клапан имеет определенные рамки изменения величины пропускной способности. Для данного случая он был ограничен пределами 0,04…0,54 (м3/ч)/бар0,5. Верхний предел является величиной при полном (максимальном) открытии клапана. Так же нормируется перепад давления на клапане. На клапане он не должен превышать 0,5 бар или примерно 5000 Па. В случае превышения максимального перепада давлений возможно некорректное регулирование температуры.


В процессе расчета системы и определения величин затекания участков было выявлено, что при расчетном режиме работы системы пропускная способность колеблется в пределах от 0,23 до 0,44 (м3/ч)/бар0,5, а перепад давления – от 1020 до 2497 Па. Данные значения полностью удовлетворяют требованиям, принятым ранее.

Если отключается первый прибор первого стояка, то после автоматического регулирования и установившегося стационарного теплового режима в помещениях пропускные способности клапанов уменьшаются и находятся в пределах значений 0,19…0,53 (м3/ч)/бар0,5. Перепады давления, соответственно,– 700…3551 Па. Это тоже вполне удовлетворяет требованиям.


Аналогичная ситуация и при отключении первого стояка. Пропускные способности клапанов уменьшаются и находятся в пределах значений 0,16…0,25 (м3/ч)/бар0,5. Перепады давления – 3186…3714 Па. Характеристика сети принимает положение S2 на графике (рис. 2)


Видно, что при различном разрегулировочном воздействии на систему отопления происходит изменение характеристики сопротивления системы. Однако клапаны вполне могут «отрегулировать» системы так, чтобы в каждый прибор поступало необходимое количество теплоносителя.


Стоит заметить, что такое регулирование имеет определенные рамки, связанные с перепадом давлений на клапане и фиксированным диапазоном его пропускной способности.

К примеру, если бы каждый стояк состоял не из трех, а из 10 приборов и был отключен бы первый стояк, то, возможно, пропускная способность клапанов второго стояка должна была упасть до минимальных значений. При этом резко повысился бы перепад давления на них.

Но этот факт необходимо доказать расчетом для конкретной системы. Если таких стояков было бы не три, а 20, то отключение одного стояка слабо бы воздействовало на гидравлику всей системы отопления. Этот фактор также обусловлен характеристикой насоса.



Система отопления с использованием балансировочных клапанов


Система показана на рис. 3. На подающем теплопроводе установлен балансировочный клапан. В этом случае общая характеристика сопротивления, а вместе с ней и потери давления в системе значительно увеличатся из-за того, что балансировочный клапан имеет большие потери давления в своей конструкции. Следовательно, насос на такой системе будет более мощный.


В расчетных условиях (все приборы работают) пропускные способности клапанов у приборов будут находиться в диапазоне 0,23…0,43 (м3/ч)/бар0,5, а перепады давлений – 1097…2574 Па. Пропускная способность балансировочного клапана будет иметь значение 0,95 (м3/ч)/бар0,5, а перепад давления – 12262 Па.

Проведем те же операции по разрегулировке системы, что и в первом случае.

При отключении стояка или одного отопительного прибора можно отрегулировать систему. Однако одного балансировочного клапана не будет достаточно, т. к. он не влияет на коэффициенты затекания воды в стояки и приборы, а будет изменять только общую характеристику сопротивления всей системы. Иллюстрация к этому замечанию приведена на рис. 4. Важно отметить, что при отключении первого прибора пропускные способности клапанов у приборов будут находиться в диапазоне 0,21…0,49 (м3/ч)/бар0,5, а при отключении стояка – 0,20…0,39 (м3/ч)/бар0,5.

Эти цифры показывают, что отклонение расчетных значений пропускных способностей клапанов меньше относительно первого случая (без применения балансировочного клапана).


Наконец, рассмотрим третий случай (рис. 5). На каждом стояке стоит пара балансировочных клапанов (регулирующий и дублер), соединенных между собой импульсной трубкой, с помощью которой поддерживается постоянный перепад давления на стояке. Принцип работы заключается в том, что данная пара клапанов поддерживает постоянный расход на стояке при постоянном перепаде давления. Регулирующий клапан изменяет свою пропускную способность в зависимости от считываемого значения перепада давления на стояке, тем самым поддерживая постоянный расход. Однако, если учитывать, что характеристика насоса не является линейной (для стандартных насосов), то при одном и том же перепаде давления на стояке расход может быть абсолютно различным. Исследуем эту схему аналогично предыдущим (рис. 4).


Рисунок 3

Схема системы отопления при использования балансировочного клапана

1 – оборудование теплового пункта; 2 – циркуляционный насос; 3 – отопительный прибор; 4 – отключающий шаровой кран; 5 – термоклапан; 6 – балансировочный клапан



Когда система работает в расчетном режиме, пропускная способность клапанов у приборов находится в диапазоне 0,27…0,46 (м3/ч)/бар0,5. Пропускная способность дублирующих клапанов неизменна и составляет 1,6 (м3/ч)/бар0,5. Пропускная способность балансировочного клапана составляет 0,32; 0,275; 0,34 (м3/ч)/бар0,5 для первого, второго и третьего стояка соответственно. Потери давления на трех стояках без учета потерь на балансировочном клапане составляют 1756, 1912 и 1881 Па соответственно. Этот перепад давления будет поддерживаться на каждом стояке при отключении элементов системы отопления.


Рисунок 4

Характеристики насоса и системы отопления при использовании балансировочного клапана

Sрасч, Sоткл, Sб.к, Sкл+б.к – характеристика сопротивления системы отопления в исходном (расчетном) режиме, при отключении первого стояка без учета регулирующего воздействия, с учетом только воздействия балансировочного клапана, с учетом воздействия клапанов у отопительных приборов и балансировочного клапана соответственно; Gрасч, Gрег – расход теплоносителя системы отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPрасч, ΔPрег – потери давления в системе отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPб.к – потери давления на балансировочном клапане; ΔPкл – дополнительные потери давления в сети, связанные с уменьшением пропускной способности на клапанах у отопительных приборов; ΔPоткл – изменение потерь давления в системе после отключения первого стояка



При отключении первого прибора или стояка на балансировочных клапанах происходит изменение пропускной способности в зависимости от потерь давления на стояке. Однако и здесь для полного регулирования системы следует изменить значения пропускных способностей клапанов у приборов. Они будут находиться в диапазоне 0,29…0,44 (м3/ч)/бар0,5 при отключении прибора и 0,25…0,5 (м3/ч)/бар0,5 при отключении первого стояка. Заметим, что эти значения мало отличаются от расчетных, что говорит об устойчивой работе системы.

Первая система (рис. 2) проста в устройстве, более дешевая, как с точки зрения капитальных затрат, так и эксплуатационных, и, самое главное, способна саморегулироваться. Правда, точность регулирования в таком случае (по отклонению расходов в отопительных приборах) может достигать 8–11 % в связи с тем, что автоматике или человеку довольно сложно точно опустить шпиндель клапана на необходимую глубину. Это обусловлено тем, что при низких значениях пропускной способности ход штока сильно влияет на количество теплоносителя, проходящего через клапан. Эти исследования подробно приведены в [1].

Вторая система (рис. 4) положительна тем, что часть регулирующего воздействия на себя берет балансировочный клапан, а точность регулировки составляет от 7 до 9 %.

Рисунок 5

Схема системы отопления при использовании пары балансировочных клапанов на каждом стояке

1 – оборудование теплового пункта; 2 – циркуляционный насос; 3 – отопительный прибор; 4 – отключающий шаровой кран; 5 – термоклапан; 6 – балансировочный клапан; 7 – балансировочный клапан постоянного перепада давления; 8 – дублер балансировочного клапана


Сложность регулировки заключается в том, что балансировочный клапан будет обслуживать специалист, хорошо знакомый с гидравликой данной системы, который будет знать, насколько надо увеличить сопротивление на клапане в случае отключения элементов системы отопления. Такой вариант возможен только тогда, когда планово отключаются целые ветви системы отопления.

Третья система (рис. 6) вполне удовлетворяет в плане автоматической регулировки. Почти всю регулирующую способность на себя берут балансировочные клапаны, и точность регулировки достигла в исследованиях условиях 1–3 %. Однако стоимость такой системы будет значительна, будут велики затраты на сервисное обслуживание клапанов, а его еще надо обеспечить, а также из-за значительных потерь давления на клапанах будет большой расход электроэнергии, потребляемой циркуляционными насосами.

Рисунок 6

Характеристики насоса и системы отопления при использовании балансировочных клапанов на каждом стояке

Sрасч, Sоткл, Sб.к, Sкл+б.к – характеристика, соответственно, сопротивления системы отопления в исходном (расчетном) режиме, при отключении первого стояка без учета регулирующего воздействия, с учетом только воздействия балансировочного клапана, с учетом воздействия клапанов у отопительных приборов и балансировочного клапана; Gрасч, Gрег – расход теплоносителя системы отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPрасч, ΔPрег – потери давления в системе отопления в исходном (расчетном) режиме и при отключении первого стояка после регулировки системы соответственно; ΔPб.к – потери давления в сети, связанные с регулирующим воздействием балансировочных клапанов; ΔPкл– дополнительные потери давления в сети, связанные с уменьшением пропускной способности на клапанах у отопительных приборов; ΔPоткл – изменение потерь давления в системе после отключения первого стояка



Выводы


Основным фактором, влияющим на выбор количества и типа арматуры, является назначение здания и вида его эксплуатации.

Например, если это жилое или административное здание, в котором не предусматривается полное длительное отключение целых стояков или ветвей (только в аварийных случаях), то вполне можно применить классический метод увязки колец циркуляции диаметрами труб. Конечно, желательно и даже необходимо у каждого прибора установить термоклапаны, т. к. это будет залогом энергоэффективности системы. А также обеспечит автоматическую регулировку системы и поддержание комфортных условий в каждом помещении.


Однако, если провести качественный гидравлический расчет системы, то можно обойтись и без регуляторов. Нужно при этом установить клапаны с определенной пропускной способностью и зафиксировать ее. Тогда комфорт будет достигнут тогда, когда вся система отопления полностью задействована.


Если проектируется система отопления в здании, например, гостиницы, где регулирование теплоотдачи прибора является одной из важных составляющих достижения комфорта, или, например, фитнес-центра, где спортзалы могут полностью отключаться, то очень важно учесть разрегулировочное воздействие системы.

Могут отключаться не только отдельные приборы в отдельных помещениях, но и целые стояки, ветви, корпуса. В таком случае можно предложить два способа регулирования.


Первый способ применим, если этажность и протяженность здания довольно велика, здание имеет много корпусов, а регулирования невозможно достичь только за счет клапанов у приборов, то можно установить достаточное количество регулирующей арматуры и автоматики на всей системе отопления. При любом разрегулировочном воздействии на систему будет восстановлен необходимый расход на каждом приборе.

Этот способ имеет ряд положительных качеств, таких как упрощенный гидравлический расчет, точное регулирование системы при различных воздействиях, пониженный расход металла и возможность организовать один мощный тепловой пункт в большом здании, а систему отопления сделать более протяженной.

Минусы первого способа будут существенными: завышенный расход электроэнергии, необходимость обслуживания системы, меньшая надежность всех элементов, высокие капитальные затраты на регулирующую арматуру. Также важно заметить, что необходимо соблюдать жесткие требования к качеству воды. Регулирующая арматура имеет элементы, имеющие низкие сечения для прохода воды, поэтому если на них будут осаждаться загрязнения, то они быстро выйдут из строя.


Второй способ предлагает разбить систему отопления на несколько систем, провести качественный гидравлический расчет и обеспечить регулирование только за счет клапанов у приборов. Таким образов, при необходимости можно отключить целую систему отопления, что никак не повлияет на работу остальных систем.

У этого способа имеются минусы: повышенная металлоемкость, возможно, будет необходима установка нескольких тепловых пунктов (для больших зданий) и более сложный гидравлический расчет.

Однако такая система имеет множество плюсов. Насосы в такой системе будут менее мощными, а значит и расход электроэнергии на них будет значительно меньше, чем в первом способе. Будет повышена надежность системы, т. к. она состоит из меньшего числа элементов, которые могут выйти из строя. И, наконец, удешевление системы за счет сокращения количества дорогой арматуры.


Если система отопления небольшая и здание имеет небольшую протяженность и этажность, то необходимо проводить качественный гидравлический расчет с увязкой каждого кольца и проведение анализа работы системы.

Каким бы не было решение при выборе различных методов конструирования системы отопления проектировщик должен помнить несколько принципов:

  • проект должен быть экономичным, как с точки зрения капитальных затрат, так и с точки зрения эксплуатационных;

  • проектируемая система отопления должна быть проста и удобна в монтаже, быть надежной и ремонтопригодной;

  • должны быть хорошо продуманы и проверены расчетом возможные изменения гидравлики системы при расчетном и эксплуатационных режимах;

При выполнении этих требований проект будет по-настоящему качественен, а система отопления – долговечной и удобной в эксплуатации.


Авторы:

Л. М. Махов

С. М. Усиков, МГСУ



Свежие записи

Популярные статьи:

Задать вопрос:

Ваш вопрос отправлен!

bottom of page